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Abstract-This paper is one of a series to be reported in open literature concerning the analytical solution 
for heat conduction in anisotropic media. According to the mathematical difficulties and methods of 
solution, problems are divided into three classes. In this paper, only problems of the first class with 
anisotropy homogeneous in rectangular coordinates are solved through the use of Green’s functions. 
The solution of a specific problem is shown and effects of material anisotropy to the temperature field 

and heat flow are discussed from both mathematical and physical points of view. 

NOMENCLATURE T, temperature; 

1 or 0 defined in (2.3); Xi, x, y, z rectangular coordinates. 

specific heat; Greek symbols 
boundary data, defined in (2.3); 
function defined in (4.4) ; 

a23 W(w); 

Green’s function; 
11, (vll-v:2)1’2; 

heat-transfer coefficient; 
L h3 -v:3p2; 

h*lkzz; 
Vija kijlk22; 

thermal conductivity coefficients; 
Yv v13-v1Zv23; 

modified Bessel function of second kind and 
0, (8:3-Y2/B:lY’2; 

order zero; 
a, v23-vlzYIB:I; 

spacing between two parallel planes; 
5, reduced coordinates defined by (8.4). 

rate of heat production per unit volume; Subscripts 

pseudo-geodesic distance; . . 
413 AT 3; 

surface; s, surface. 

1. INTRODUCTION 

IN RECENT years, the study on anisotropic materials has been of great interest in applied science and engineering, 
because of the rapidly increasing use of laminated structures, crystals and heat shielding materials. Many 
natural substances such as woods and sedimentary rocks are anisotropic. Metals which have undergone heavy 
cold processing also exhibit some kinds of anisotropy. In spite’of the importance of anisotropic problems, reported 
results of their analytical solutions have been mostly done in crystal physics [l, 21 and elasticity [3-61. 

Reported results of analytical solution of anisotropic problems with heat conduction as the principal subject 
have been very limited. Turkan and Tuna [7] extended an “approximate continuum theory on elasticity” to 
the solution of heat conduction in infinite-composite slabs and cylinders; but no result for the anisotropic case 
was reported. An exact solution of the same problem was reported by Padovan [8] in the form of triple series 
with discrete eigenvalues in all three directions. However, it may be pointed out that the exact solution for 
infinite composites of even isotropic media has not been reported to date, because of the difficulty in the 
calculation of eigenvalues with respect to the coordinate normal to the laminates. This difficulty is due to the 
fact that, if the laminates extend to infinity in one direction, then the eigenvalues in that direction are to be 
of continuous spectrum. This difficulty can be easily conceived from a recent paper of Horvay et al. [9]. 

Numerical solution of anisotropic problems has become possible since the advent of electronic computers. 
Katayama [lo] employed the finite difference method and found his calculated results in good agreement with 
his experimental data. Chang et al. [ll] employed the integral-equation method to calculate the temperature 
and heat flux distributions in a square, a circular disk, and an annular disk. Chen [ 121 applied the same method 
for the solution of anisotropic heat conduction in arbitrarily shaped domains. Cobble [13] solved the heat 
conduction in a wedge by first transforming the partial differential equation into an ordinary differential equation 
and then solving it numerically. The above studies were made on boundary conditions of Dirichlet type. For 
other boundary conditions, the calculations will be more complicated, especially for steady-state problems in 
open domains. 
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Experimental determination of thermal conductivity coefficients of general anisotropic materials may need the 
three-dimensional solution for a given specimen, for the simplification of two-dimensional analysis is useful 
only if material body possesses a plane of material symmetry [4]. 

According to our study on anisotropic problems of heat conduction, we find that the analytical solution 
of an anisotropic problem is in general difficult to obtain, especially in a finite region, but the Green’s function 
can be constructed with less difficulty and for most cases can be expressed in terms of tabulated functions. 
We have also found that it is more convenient to divide anisotropic problems into three classes [14]. The first 

class considers the region bounded by not more than two surfaces normal to one spatial coordinate. The second 
class considers the region bounded or partially bounded by more than two surfaces on which the boundary 
conditions of the mixed type are limited on two parallel surfaces. The third class considers the region with 

boundary conditions of the mixed type on more than two surfaces. We shall report our studied results according 

to the above sequence. 
In this paper, only problems of heat conduction in free space, half space and a slab are analyzed. These 

problems are clearly of the first class. Both steady and unsteady states with boundary conditions of Dirichlet, 
Neumann and mixed types are considered. For brevity, these boundary conditions will be referred to as the 

first, second, and third kinds, respectively. We shall concern mainly with the construction of Green’s functions, 
since once the Green’s function is known, the solution of a problem may be considered as complete, just as 
in the solution of isotropic problems [15-171. An example will be shown to facilitate the discussion on 

anisotropic effects. 
Several methods for the solution of the first-class problems may be used, such as the use of complex variables 

for two-dimensional problems [5,6], the separation of variables [18], and integral transforms [19]. The latter 
method will be used in this paper in order that Green’s functions for all the problems can be systematically 

presented. From results thus obtained, a transformation of coordinates is discovered. 

2. FUNDAMENTAL EQUATIONS AND FORMAL SOLUTIONS 

Consider an anisotropic medium which is homogeneous in rectangular coordinates* and has constant 
thermo-physical properties. The differential equations to be solved for unsteady and steady states are 
respectively [ 151 

lY2T W$-ki,im- Q(Xi> t) = 0 in R for t > 0 
“I , 

k.. ‘ZT II E + Q(xJ = 0 in n 
1 J 

(2.1) 

(2.2) 

where the summation convention has been followed; n is the region concerned, and ‘other quantities have been 
defined in the Nomenclature; coefficients kij are assumed symmetrical, i.e. k, = kji for i #j; and according to 

irreversible thermodynamics, kii > 0; kii kjj - k,$ > 0 for i # j; and kij can be either positive or negative [20]. 
The boundary conditions on T may be written in the general form 

^ 
b$+hT=f on S for t > 0 (2.3) 

T=F in fi for t = 0 (2.4) 

where S is the surface of the region concerned; b is a pure number, and either h or b may be zero or unity 
so that boundary conditions of other kinds are included; f, F and Q are known functions and assumed to 
satisfy HGlder conditions or be square integrable;t for unsteady problems, f may also depend on time; and 
n+ is the conormal so that the transverse derivative is 

(2.5) 

where the plus and minus signs are for surfaces at xi > 0 and Xi = 0, respectively. For steady problems, condition 
(2.4) drops and condition (2.3) remains in the same form, butfdepends on spatial coordinates only. 

If G(Xi, tlxf, t’) denotes the Green’s function associated with problem (2.1), (2.3), (2.4), then with b = 1, or b = 0 
and h = 1, the temperature can be obtained by the use of Green’s second formula [21]. 

’ -22 
ss 

f(X;, t’) ~ G(Xi, tlX:, t’)dS(X:)dt’. (2.6) 
II s 

*An anisotropic material which is homogeneous in one coordinate system becomes heterogeneous in other coordinate 
systems. 

tFor two-dimensional steady problems in free and half spaces,fand Q arc more restrictive [5, 171. 
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If surface conditions are of Neumann’s type, i.e. h = 0 and b = 1 in (2.3), then the last integral in (2.6) is 
replaced by 

--a2 

ss 

i s f(x:, t’)C(xi, tlxl, t’)dS(X:)dt’. (2.7) 

For steady problems, we just drop the first integral in (2.6) and remove the time variable, integrals with respect 
to time, and the factor a2, and change the factor l/pc in (2.6) by l/kzz [22]. 

3. DETERMINATION OF GREEN’S FUNCTIONS 

In the following, we shall use x, y, z to designate the spatial coordinates while Xi will be used only to represent 
a point in three-dimensional space. We let the semi-infinite region be over the plane y = 0 and the slab be 
bounded by planes y = 0 and y = L. 

Consider first the unsteady problem. The Green’s function is to satisfy [23]. 

a2G 1 aG 1 v. _---_= 
“axiax, c12 at 

- ---6(xi-x+5(t-t’) 

a2W(xi) 

and homogeneous initial and boundary conditions, where w(Xi) is a weight function yet to be determined. For 
-CO < x < cc and -cc < z < cc, we have the Fourier transform of G(Xi, tlx;, t’) 

cc 
cc 

G(y, tly;, t’; x’, z’; M, N) = 
s s 

G(Xi, t IX:, t’) exp(iMx + iNz)dX dz (3.1) 
-51 -cs 

and ,its inverse is 

G(Xi, rlXi, t’) = $ 
s s 

; 
cc 

G~,tly’,t’;x’,z’; M,N)exp[-i(Mx+Nz)]dMdN (3.2) 
m -cc 

where i = (- 1)“‘. By the usual procedure for the construction of Green’s functions by Fourier Transform [16], 
we obtain 

- _ 

~-2i(Mv12+Nv~~)~-(M2v~~+N2v~~+2MNvl~)(;-~~ 
2 

1 
= - -exp[i(Mx’+Nz’)G(t-t’)6(y-y’). (3.3) 

a2W(Xi) 

We seek the solution of (3.3) in the form 

G(y, tly’, t’, x’, z’, M, N) = ‘Y(yly’; M, N)exp[i(Mx’+Nz’)-a2i2(t-t’)]. (3.4) 

We substitute (3.4) into (3.3) to obtain 

Y”-2i(Mv1~+Nv23)Y’+(122-M2vll-N2v33-2MNv13)Y = -A&-y’) (3.5) 

where the superscript primes designate differentiations with respect to y. This equation can be reduced to 
self-adjoint form with the weight function w(y) = exp[i2(Mv 12 + Nv24y]. Therefore, we obtain 

‘I’cvly’) = Y(yly’)exp[i(Mvi2+NvzA(y-y’)] 

where Y(yly’) satisfies 

Y”(y)+(~Z-M2/?:,-N2/?;,-2MNy2)Y(y)= -6(y-y’). (3.6) 

Equation (3.6) can be easily solved for a specific region with a given type of boundary condition by standard 
methods [ 161. Once Y(yy’) is found, the Green’s function is given by 

G(Xi, tlX;, t’) = $ 

ss 

r 

cc 

YOlly’)exp{-iM[(x-x’)-~,2Cv-~‘)l 
cc -0Z 

-iN[(z-z’)-v2&-y’)]-a2d2(t-t’)}dMdN. (3.7) 

In principle, the integrals in (3.7) can be evaluated by residue calculus. Due to the coupling of M and N in (3.6), 
however, it is inconvenient to evaluate the integrals except for cases where vr2 v2z = vlz or the problem is 
independent of z. Since M is arbitrary, we may let M = P-AN where P is another arbitrary constant and A 
aconstant yet to bedetermined. Replacing M in (3.6) by P-AN, we find that if A = r/Pi1 then (3.6) takes the form: 

Y”(_v)+[~~-M~~~~-N~~~]Y(~)= -6(y-y’) (3.8) 
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where P has been rewritten as M since either one is arbitrary. Finally, we obtain the following general formula 
for Green’s functions associated with all the problems concerned in this paper: 

(z-z’)-s(y-y+(x-x’) 
11 

Now the problem is to investigate how G(xi, txi, t’) will satisfy the boundary conditions, for the half space, 

ba$+hG=Oaty=O; G=Oaty=co (3.10) 

and, for the slab, 

aG 
bp+hG=Oat y=Oand L. (3.11) 

Substituting (3.7) or (3.9) into (3.10) and (3.11) and assuming that the integration and differentiation can be 
interchanged, we readily find that if Y(yjy’) satisfies the boundary conditions for the half space 

by’-hY=Oaty=O; Y=Oaty=rx: (3.12) 

and for the slab 

bY’-hY = 0 at y = 0; bY’+hY=Oaty=L (3.13) 

then G(xi, txi, t’) given by (3.7) or (3.9) satisfies (3.10) and (3.11). 
The Green’s functions for steady problems can be obtained by two methods: (i) integrating G(xi, tlxj, 0) with 

respect to t from t = 0 to t = co, and multiplying the result by CQ : 

G(xilxi) = ~2 
s 

a 
G(xi, I Ix;, t’, 0) dt (3.14) 

0 

and (ii) solving the governing equations of G(xilxl) by the same way as in obtaining the Green’s function for 
unsteady state. The result is 

-iN (I-.z’)-~(y-y’)-$(x-x’) 
1 

dMdN (3.15) 
11 

where Y(y 1 y) satisfies 

Y” - [M’/l:, +N2a2] Y = -6(y-y’). (3.16) 

Again, if Y satisfies boundary conditions (3.12) or (3.13) then G(xilxi) given by (3.15) satisfies conditions (3.10) 
and (3.11). 

It is clearly seen that when we have solved the anisotropic problems by this formula, we have also solved 
the corresponding isotropic and orthotropic problems by setting Vij = 0 and vii = 1 and Vij = 0, respectively, as 
well as problems of any system of anisotropy, such as monoclinic, orthohomic, tetragonal, etc. [ 1,2, 151. It may 
be pointed out here that most of the integrals in this paper can be evaluated by residue calculus, and many of 
them can be found in mathematical manuals [24,25]. 

4. FREE SPACE 

Green’s functions associated with unsteady and steady problems in an infinite anisotropic region were first 
reported by Levi and known as Levi’s parametric functions, or fundamental solutions, which are well known 
in theory of integral and differential equations [21,22]. Although Levi’s functions are Green’s functions, they 
are not symmetrical with respect to any plane of xj = constant. Therefore, their usefulness in applied mathematics 
is limited to the numerical solution of problems in arbitrary regions [ll, 121 or to the analytical solution of 
steady problems in circular or elliptic plane regions with anisotropy homogeneous in rectangular coordinates [3]. 
The function Y(yly’) governed by (3.8) and (3.16), however, can be symmetrical with any y-plane. It is therefore 
advantageous to obtain the Green’s functions in infinite region by formulae (3.9) and (3.14). The solution of (3.8) 
for Y(yy’) satisfying Y = 0 for y = f co may be taken in the form: 

&exp(-Pig-$1) (4.1) 
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where 

or 

Pz = - (AZ - M2/3T1 - N2a2) 

where 

&exp[-iP(y-y’)] 

P2 = I.‘- M’P:, -N2a2. 

(4.2) 

(4.1’) 

(4.2’) 

Applying (4.1) or (4.1’) to (3.9) we obtain 

where 

1 G(xi* t I% t’) = 2[ncr2(t_ t,)]l,2 exp[-&l&t, +& t’) (4.3) 

and 

CJ(Xi, tlX;j t’) = 4RC( ~lt(l_t,)bexp[-R~/~2(t-t’)l (4.4) 
2 

R: =~[(~-r.)-v,,~-y~)]~+~[(~-~~)-ECI.-4~. (4.5) 
11 

Applying (4.3) to formula (3.14) gives the Green’s function for steady state 

1 1 
G(xix’i) = -- 

47&i Q R 
(4.6) 

where R2 = Rf + (y-y’)‘. 
If G(XilXf) is independent of z, we can obtain G(x, y(x’, y’) from formula (3.14), or (3.15) through the solution 

of (3.16) for Y(yy’) satisfying Y = 0 for y = &co, or by integrating (4.6) with respect to z over (-co, co) to obtain 

1 
G(x, ylX',y') = - lnJ- 

27$‘11 R2 
(4.7) 

where 

1 
R; =T[(x-x’)-v12(y-y’)]2+(y-y’)2. 

B 
(4.8) 

11 

5. HALF SPACE 

For the half space, the Green’s functions with boundary conditions of the first and second kinds can be readily 
written down by the method of image as follows: 

G(xi, tlx;, t’) = 
1 

2[7caz(t - t’)] 
,,2exp[-(y-y’)2/4c(z(t-t’)] *exp[-(JJ+y’)2/h2(t-t’)~g(Xi, tlXf, t')] (5.1) 

where the minus and plus signs are for boundary conditions of the first and second kinds respectively; and 
g(Xi, t Ix;, t’) is given in (4.4). For the boundary condition of the third kind, the solution (3.8) is 

YcVlv’) =~iexPC-p(y+y')l+exp[-P(y-4.')lj -&exp[-Pb+r')l 

where P* is given by (4.2). Substituting (5.2) into (3.9) and performing the integrations gives 

(5.2) 

-2h[na2(t- t’)]“’ exp[a2 h2(t - t’) + hb +y’)] erfc Y+Y' 
2[C(l(t-t’)]1’2 

+ h[t12(t-t’)]“’ S(Xi, cl&> t’) (5.3) 

where erfc is the complementary error function and g(Xi, tlx;, t’) is given in (4.4). 
The Green’s functions for steady Dirichlet and Neumann problems can be similarly found by the method 

of image as follows : 

G(xilXj) = ~ (5.4) 
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where the minus and plus signs are for Dirichlet and Neumann problems, respectively: and 

RZ = R; + (y-J’)’ 

R; = R; + (J, fy’)’ 
(5.5) 

The Green’s function for the three-dimensional problem in steady state with the boundary condition of third 

kind can be obtained by substituting (5.3) into (3.14): 

where 

(5.6) 

(5.7) 

Green’s functions for two-dimensional cases, G(x, J; tlx’, _$, t’) and G(x, y/x’, $) can be obtained by the same 

way. Those in unsteady state are in the same forms as (5.1) and (5.3) provided g(Xi, t/xi, t’) is replaced by 

g,(x, ?; tlx’, JX’, t’) defined by: 

(5.8) 

and those in steady state with boundary conditions of the first and second kinds are 

G(x.!‘l.u’,j,‘) = 2$;(ln~+In~) 

where 

r: = (~~-_1~‘)~+gl[(x-x’)-v~~(~~-)11)]~ 
11 

ri = (v+J.‘)’ ipi-[(x-~‘)-v~~(y--y’)]~ 
11 

(5.9) 

(5.10) 

and the plus and minus signs have the same meaning as in (5.4). For the boundary condition of third kind we may 
again use (3.14) to obtain 

where 

1 
G(x, Ax’, Y’) = ~ 

27Qr, 

r: = (Y+~)~+[(.~-x’)-v,~(Y-Y’)]~IB~,. 

(5.11) 

6. INFINITE SLAB 

Consider first unsteady problems. The solutions of (3.8) satisfying (3.13) for boundary conditions of the first, 

second and third kinds are respectively. 

Y,,(~~iy’) = -L sin L sin T WI= 1,2,3 ,..., x 

Y&l~(J’) = ~cos~cos~ WI= 1,2,3 ,..., z (6.2) 

2 (w,costo,~~+hsinw,~)(w,cosw,y’+hsino,y’) 
r,&W) = L 

( w: + h2 + 2h/L 
(6.3) 

where w, are the roots of the transcendental equation 

2hw 
tanwL=- 

cl2 - h2 
(6.4) 

and 

1.’ = ‘!? 

i ) 

2 

L 
+ M’[j;, + N2a2 

for boundary conditions of the first and second kinds, and 
q2 /. = w; + M’p:, i N2a2 

for the third-kind boundary condition. Substituting (6.1), (6.2) and (6.3) into (3.9), performing the integrations, 
and noting that 111 = 0 is also an eigenvalue for the Neumann problem, we obtain the Green’s functions with 
boundary conditions of the first, second and third kinds, respectively, as follows: 

(6.5) 

(6.6) 

G(xi, rl.43 t’) = i Y,,(~I$)exp[-ti2W,?,(~-r’)]g(xir fix;, 1’) 
m=1 

(6.7) 
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where g(xi, tlxf, t’) is given in (4.4). For steady state, we apply (6.5) and (6.7) 
functions with boundary conditions of the first and third kinds, respectively, 

to (3.14) to obtain the Green’s 

(6.8) 

(6.9) 

where values of w, are given by (6.4); RI is given in (4.5); and K. is the modified Bessel function of the second 
kind and order zero. If we substitute (6.6) into (3.14), we shall see that the Green’s function for the Neumann 
problem does not exist, and we have to construct the generalized Green’s function which will not be shown here. 

For an infinite strip in the region, 0 < y -C L, x < co, with boundary conditions of the first kind, the solution 
of (3.16) for y < y’ is 

exp[Mfill(y+y’)]-exp[-MB1l(J-.V’)l 

2MP11[l -exp(2MB11Ul ’ 
(6.10) 

and, for y > y’, we simply interchange y and y’. Substituting (6.10) into (3.15) and evaluating the integral, we 
obtain the Green’s function for the two-dimensional Dirichlet problem 

G(x,Y(x’,Y’)=& $lisinysinFexp 
m- 

-Ei(x-x’)-YLZ().-$)I 
11 1 

(6.11) 

or 

G(x, Y Ix’, Y’) = - 

sin2[~(y+y’)]+sinh2{~[(rxl-v,,(*-v)l} (612) 

4n’111n sin’[&(y-y’)]+sinh’{&[(x-x’)-v12(y-y’)]j ’ 

The Green’s function for the two-dimensional, steady problem with third kind boundary conditions can be 
obtained by the same way as 

G(x,Y~x’>Y’) = B1lLm=l LX (w,cos w,y+hz sin w,y)(w, cos w,y’+h2 sinw,y) 

w,(oH + h: + 2h2lL) 

x exp[-(w,/Bll)l(x-x’)-v,z(y-L”)Il. (6.13) 

It is to be remarked that if formulae (3.15) and (3.16) were used, closed-form solutions of (6.Q (6.9) and (6.13) 
are difficult to obtain by the residue theorem. 

7. ANISITROPIC PARAMETERS AND AN ILLUSTRATIVE EXAMPLE 

From the above results of Green’s functions it is seen that the material properties and heat-transfer coefficient 
are grouped into the following parameters: 

a2 tlL2, h/L (7.1) 

v12, P 11, 1’= v13-v12v23, 

a2 = p:3 -y2/p:1. (7.2) 

If the governing equation is divided by k, , of k,, similar sets of parameters as in (7.1) and (7.2) can be obtained. 
The parameters in (7.1) are well known as the Fourier and Biot moduli in isotropic problems and therefore, 
discussion on them is not needed. The parameters in (7.2) are of great importance. According to irreversible 
thermodynamics, as mentioned earlier, Bii > 0 and vij(i # j) can be positive or negative. From the definitions of 
y and E, they can also be either positive or negative. From the definition of CJ and the expression of Green’s 
functions, 0 must be larger than zero and the Green’s function does not exist if jl, = 0 or 0 = 0. The findings 
are of great importance in the investigation of anisotropic problems and have not been reported by previous 
investigators. 

In order to gain some specific insights into the anisotropic effects to the heat transfer, a simple example may 
be considered: heat conduction in the infinite strip 0 < y < L and x < m, in steady state, without heat generation, 
and with boundary conditions: 

T(x, 0) = fi(X) T(x, L) = h(x). (7.3) 

The Green’s function associated with this problem is given in two forms, one in closed form (6.12), and the 
other in series (6.11). Applying (2.6) to the present problem, we obtain 

m 

mG Y) = - s , _oD f,(x~)~G(x.ylx',O)dx'- cc 
-e 

.W)~(X,YIX’JN~‘. (7.4) 
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If (6.11) is used for G(x, y/x’, )I’), the transverse derivatives are obtained : 

&G(x,y,x..O)= - Amgl sin~exp[-mxlix-x’)-v,2~,li(~~,,L)] (7.5) 

$ G(x, ylx’, U = j$ i (- 1)” 
11 m I 

sin~exp[-mnl(x-x’)-i,,l(!.-L)li’(/j,,L)] (7.6) 

If (7.5) and (7.6) are substituted into (7.4) the integrations can be easily performed and expressed in terms 
of tabulated functions if fi (x) and f2(x) are elementary functions. The resulted series converge slowly near 
boundaries. 

If the Green’s function in the form (6.12) is used, there results 

(7.7) 

sin n(.Y - L) 
1 

&G(x,ylx',L) = ___ 
1. 

2BllL cash n[(x-x’)- hziJ,-L)] 

Pl,L 
_ cos d!, - L) 

L. 

Substituting (7.7) and (7.8) into (7.4) gives T(x, ~3, which is identical with that reported by Tauchert and Akoz 
[6], except in notation. To show that the results (7.5) and (7.6) are equivalent to (7.7) and (7.8) the former may 
be considered as the imaginery parts of the function 

where L; = y for (7.5) and j = JJ- L for (7.6). A little further deduction gives the results of (7.7) and (7.8). 
From the solution of T(x, y), the effects of anisotropy to the temperature and heat flow can be easily discussed., 

For instance, consider the case: 

fi (x) = 0, for 1x1 < z; 

.Mx) = 0, for O>x>2L (7.9) 
fi(x) = f2(-x) for 0 <x < 2L. 

If the medium is isotropic or orthotropic, the temperature distribution and heat flow lines are symmetric with 
respect to the plane x = L. In an anisotropic medium, however, no such symmetry exists. If vi2 is positive, the 
temperature is higher in the left hand side of x = Li than in the right hand side at the same correspondin 
points with respect to x = L. Some calculated results of isotherms for p $ r1 = 7/8,vi2 = 1/4andf,(x) = T0sin(zx/2L 
are shown in Fig. 1. The heat flow lines are depicted in Fig. 2(b) for positive viz and in Fig. 3(b) for negative vi*. 
However, patterns of isothermal and heat flow lines are the same if they are looked from the face of the paper for 
one case and from the backside of the paper for the other. From physical points of view, for positive viz the 
anisotropy of the material may be depicted as in Fig. 2(a) with heat flow lines in Fig. 2(b), and for negative viz, 
they may be depicted as in Figs. 3(a) and (b). These discussions are qualitatively in agreement with those reported 
in [ll] for problems in finite regions. 

Though the material anisotropy is represented by vij, yet its effects to the temperature distribution and hence 
to heat transfer depend on the parameters in (7.2). It can be clearly seen from the definitions of y and E, that for 
three-dimensional problems, the cross-conductivity coefficients v i3 and v23 affect the heat transfer only through 
‘/ and E. In other words, a strong anisotropy of the material in xz and/or yz plane (i.e. vi3 and ~23 are large) 

FIG. 1. Temperature distribution in 0 Q x < 2L, 0 < J < L 
of a slab. 
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2fa) 2(b) 
FIG. 2. (a) Orientation of anisotropy for positive viz. 

(b) Heat-flow lines for positive v,*. 

3(b) 

FIG. 3. (a) Orientation of anisotropy for negative Y,~. 
(b) Heat-flow lines for negative Y,~. 

may have small effects to the heat transfer if y and E are small. The parameters of /II1 and c play the role of scale 
factors to the spatial coordinates, as well as to the magnitude of temperature. From the results of Green’s 
functions for three dimensional problems, it is seen that E and y/fit1 play similar roles as viz. Therefore their 
eEects to the tem~rature field can be discussed in the like manner as those discussed above on v, 2. 

8. CONCLUDING REMARKS 

It can be shown without difficulty that the usually used transformation of coordinates into principal ones 
is not useful for problems in a bounded or partially bounded region, because the domain will be deformed 
and the boundary condition or conditions, particularly those of the second and third kinds, will become more 

complicated. However, from the success of reducing (3.6) to the form of (3.8) as well as from the results of 
Green’s functions, we can readily see that the differential equation (2.1) and conditions, (2.3) and (2.4) can be 
transformed into the same forms for isotropic media, i.e. 

where 

bg-=h*=f(&) on %J, t > 0 
2 

T = Ffti) in Q(<i), f = 0 (8.3) 

1 
r1 = -(Xl--V12X2), 

B 
52 = X2 

11 

(8.4) 
1 

[3=- X3-&X2--X1 . 
CT ( Dil ) 

Clearly, however, the transformation of coordinates defined by (8.4) is useful for problems of the first class with 
anisotropy homogeneous in rectangular coordinates. It fails for first-class problems in other coordinate systems 
and for problems of the second and third classes in any coordinate system. 

The anisotropic parameters shown in (7.2) are the most signi~cant and useful ones. Although each of vij 
represents a directional anisotropy of a material, yet their effects to the heat transfer are mutually related and 
one may oppose the other. This is of great importance in the production of a specially-purposed material in 
which the heat transfer in one direction may be many times larger than in other directions. 

If the solution of a problem involves an infinite series, the series usually converges as fast as those of the 
corresponding isotropic problem. 

All problems in this paper can be solved directly by Fourier transform provided the technique in obtaining 
(3.8) is employed. For problems of other classes, any integral transform will be no longer useful because of the 
impossibility offinding a kernel which can satisfy the homogeneous boundary conditions. It may be just mentioned 
here that Green’s function can be constructed for those problems according to the Green’s functions for first-class 
problems. We hope to report such results elsewhere. 
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SOLUTION ANALYTIQUE DE LA CONDUCTION THERMIQUE 
DANS UN MATERIAU ANISOTROPE ET DES REGIONS INFINIES, 

SEMI-INFINIES OU LIMITEES PAR DEUX PLANS 

Rbum&Cet article est I’un d’une sCrie publik dans la littkrature et concernant Ia solution analytique 
de la conduction thermique dans les milieux anisotropes. Compte tenu des difficult& mathhatiques 
et des m&hodes de r&solution, les probl&nes sont divisb en trois classes. Ici seuls des problkmes de la 
premikre classe, avecdes matkriaux homog&nes et anisotropes en coordonn& rectangulaires, sont risolus 
g l’aide des fonctions de Green. On donne la solution d’un probltie sp&cifique et on discute les effets 
de l’anisotropie sur le champ de tempirature et sur le flux de chaleur, du point de vue mathimatique 

aussi bien que physique. 

ANALYTISCHE LOSUNG FOR DIE WjiRMELEITUNG IN ANISOTROPEN, 
UNENDLICHEN UND HALBUNENDLICHEN KC)RPERN SOWIE IN UNENDLICH 

AUSGEDEHNTEN PLATTEN 

Zusammenfassung-Diese Arbeit gehlirt zu einer Serie von Verijffentlichungen iiber die analytische 
LGsung von Wtimeleitproblemen in anisotropen KSrpern. Entsprechend der mathematischen Schwierig- 
keiten und der Lijsungsmethoden werden die Probleme in drei Klassen eingeteilt. In der vorliegenden 
Arbeit werden die Probleme der ersten Klasse mit homogener Anisotropie in rechtwinkligen Koordinaten 
unter Verwendung der Greenschen Funktionen gel&t. Die LGsungsmethode wird auf ein spezielles 
Problem angewandt, und es werden die Einfliisse der Anisotropie auf das Temperaturfeld und den 

W$rmestrom aus mathematischer und physikalischer Sicht diskutiert. 

AHAJIHTMYECKOE llCC.JIEflOBAHME TEI-IJIOI-IPOBOAHO~M B 
AHH30TPOIIHbIX CPEAAX B BECKOHE=IHOfi M rIOJIYBECKOHE9HOn 
OSJIACTXX H B OBJIACTM, OTPAHH9EHHOti ABYMa I-IJIACTMHAMH 

AtmOTarple-HacTo54JIWl CTBTbSI OTHOCUTCR K pXAy pa6oT n0 aEWIZiTI.i'IeCKOMy peIJJeIi&ito 3aAaq 

'TelTJIOnpOBOAHOCTii B BBWOT~IIHbIX CpCnaX, II~~CTilBJItWHbIX BBTOPOM LIJIB OKIy6nHKOBBHHB B 

neyaTE. llo MeToAaM H momoc~~ pememm 3aAaw noApa3AemmTccn Ha 3 Knacca. B ffacrorwel 

pa6oTe PaCCMaTpMBaIOTCS 3aAaYH l-r0 Knacca AJIX aHEi30TpOIDibIX OAHOpOAEIbIX CpeA B np#IMO- 

yronbHbIx KoopAmaTax, pemaeMbIe c noMombm @ymqm Tpmia. l7pmeAefio peruemfe vacTIiol 

3aAawi. Pacmarpnsaerca BnmmUe ami30TponnocTH na TeimepaTypnoe none H senuqmry Tenno- 
BOrO IIOTOKa KBK C MaTeMaTH’ifXKOfi, TaK H C +H3HYeCKOfi TOWK SPWIHII. 


